Evidence for allosteric regulation of pH-sensitive System A (SNAT2) and System N (SNAT5) amino acid transporter activity involving a conserved histidine residue.
نویسندگان
چکیده
System A and N amino acid transporters are key effectors of movement of amino acids across the plasma membrane of mammalian cells. These Na+-dependent transporters of the SLC38 gene family are highly sensitive to changes in pH within the physiological range, with transport markedly depressed at pH 7.0. We have investigated the possible role of histidine residues in the transporter proteins in determining this pH-sensitivity. The histidine-modifying agent DEPC (diethyl pyrocarbonate) markedly reduces the pH-sensitivity of SNAT2 and SNAT5 transporters (representative isoforms of System A and N respectively, overexpressed in Xenopus oocytes) in a concentration-dependent manner but does not completely inactivate transport activity. These effects of DEPC were reversed by hydroxylamine and partially blocked in the presence of excess amino acid substrate. DEPC treatment also blocked a reduction in apparent affinity for Na+ (K0.5Na+) of the SNAT2 transporter at low external pH. Mutation of the highly conserved C-terminal histidine residue to alanine in either SNAT2 (H504A) or SNAT5 (H471A) produced a transport phenotype exhibiting reduced, DEPC-resistant pH-sensitivity with no change in K0.5Na+ at low external pH. We suggest that the pH-sensitivity of these structurally related transporters results at least partly from a common allosteric mechanism influencing Na+ binding, which involves an H+-modifier site associated with C-terminal histidine residues.
منابع مشابه
Effects of Sodium and Amino Acid Substrate Availability upon the Expression and Stability of the SNAT2 (SLC38A2) Amino Acid Transporter
The SNAT2 (SLC38A2) System A amino acid transporter mediates Na+-coupled cellular uptake of small neutral α-amino acids (AAs) and is extensively regulated in response to humoral and nutritional cues. Understanding the basis of such regulation is important given that AA uptake via SNAT2 has been linked to activation of mTORC1; a major controller of many important cellular processes including, fo...
متن کاملInvolvement of Histidine Residue His382 in pH Regulation of MCT4 Activity
Monocarboxylate transporter 4 (MCT4) is a pH-dependent bi-directional lactate transporter. Transport of lactate via MCT4 is increased by extracellular acidification. We investigated the critical histidine residue involved in pH regulation of MCT4 function. Transport of lactate via MCT4 was measured by using a Xenopus laevis oocyte expression system. MCT4-mediated lactate transport was inhibited...
متن کاملDistinct sensor pathways in the hierarchical control of SNAT2, a putative amino acid transceptor, by amino acid availability.
Mammalian nutrient sensors are novel targets for therapeutic intervention in disease states such as insulin resistance and muscle wasting; however, the proteins responsible for this important task are largely uncharacterized. To address this issue we have dissected an amino acid (AA) sensor/effector regulon that controls the expression of the System A amino acid transporter SNAT2 in mammalian c...
متن کاملIL-6 stimulates system A amino acid transporter activity in trophoblast cells through STAT3 and increased expression of SNAT2.
Changes in placental nutrient transport are closely associated with abnormal fetal growth. However, the molecular mechanisms underlying the regulation of placental amino acid transporters are unknown. We demonstrate that physiological concentrations of the proinflammatory cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-alpha stimulate the activity of amino acid transporter system A...
متن کاملPromoter characterization and role of CRE in the basal transcription of the rat SNAT2 gene.
Small neutral amino acid transporter 2 (SNAT2) is the most abundant and ubiquitous transporter for zwitterionic short-chain amino acids. The activity of this amino acid transporter is stimulated in vivo or in vitro by glucagon or cAMP analogs. However, it is not known whether the increase in activity at the protein level is due to an increase in SNAT2 gene transcription. Thus, the aim of the pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 397 2 شماره
صفحات -
تاریخ انتشار 2006